Current Issue : April - June Volume : 2021 Issue Number : 2 Articles : 5 Articles
Oral drug therapy is generally provided in the form of solid oral dosage forms (SODF) that have to be swallowed and move throughout the oro-esophageal system. Previous studies have provided evidence that the oro-esophageal transit of SODF depends on their shape, size, density, and surface characteristics. To estimate the impact of SODF surface coatings during esophageal transit, an in vitro system was implemented to investigate the gliding performance across an artificial mucous layer. In this work, formulations comprised of different slippery-inducing agents combined with a common film forming agent were evaluated using the artificial mucous layer system. Xanthan gum (XG) and polyethylene glycol 1500 (PEG) were applied as film-forming agents, while carnauba wax (CW), lecithin (LE), carrageenan (CA), gellan gum (GG) and sodium alginate (SA), and their combination with sodium lauryl sulfate (SLS), were applied as slippery-inducing components. All tested formulations presented lower static friction (SF) as compared to the negative control (uncoated disc, C, F0), whereas only CW/SLS-based formulations showed similar performance to F0 regarding dynamic friction (DF). The applied multivariate analysis approach allowed a higher level of detail to the evaluation and supported a better identification of excipients and respective concentrations that are predicted to improve in vivo swallowing safety....
Vaccination is one of the main methods for the specific prevention of infectious diseases. The disadvantage of vaccination is the use of pathogens (live or attenuated viruses and bacteria) that can lead to the development of a disease. Recombinant technologies are capable of producing specificDNA or protein molecules that possess antigenic properties and do not cause disease. However, individual antigen molecules are low-immunogenic, and therefore, require conjugation with a compound possessing stronger immunogenic properties. In this study, we examined the immunogenic properties of the new anionic copolymer consisting of glycidyl methacrylate, butyl acrylate, triethylene glycol dimethacrylate, and acrylic acid, in mice. The experimental polymer induced a stronger immunogenic response than aluminum hydroxide. The histological studies have established that immunization both with aluminum hydroxide and the polymer studied does not cause damage to the liver, kidneys, or the spleen. No negative side effects were observed. It has been concluded that the new synthetic anionic polyelectrolyte hydrogel (PHG) has a potential as an adjuvant for vaccine development....
Excipients play an important role in pharmaceutical formulations. Many clay minerals, because of their large specific surface area and inert behaviour in reactions with active ingredients, are commonly used as excipients. In this study, the uptake of ranitidine (RT), the active ingredient of Zantac, on and released from palygorskite (Pal), kaolinite (Kao), and talc was evaluated under different physicochemical conditions. The results showed that the uptake of RT on these minerals was limited to the external surface areas only. Cation exchange and electrostatic interactions were responsible for the RT uptake on Pal and Kao, resulting in a monolayer sorption. In contrast, multilayer RT uptake was found on the talc surfaces. Under different desorbing conditions, significant amounts of sorbed RT remained on the solid surface after 5 h of desorption. The results suggest that the sorptive interactions between the active ingredients and the excipients may not be neglected in pharmaceutical formulations, should these minerals be used as additives and/or excipients....
Natural polymers have become attractive to pharmaceutical researchers and manufacturers as excipients because of the advantages they possess relative to their semisynthetic and synthetic counterparts. Although pectin from some natural sources has been investigated for use in the pharmaceutical industry as excipients, pectin from okra, which is readily available and used as food in many parts of the world, has not been extensively investigated as a potential control-releasing agent in tablets. This study thus seeks to determine the drug release modifying properties of okra pectin from 6 different genotypes of okra cultivated and available in Ghana. Pectin was extracted from different genotypes of okra, physicochemical properties were characterized, and control release matrix tablets of metformin (F1–F6) were formulated using the wet granulation method with the okra pectin as the drug release modifier, respectively. The drug content, in vitro drug release, and mathematical kinetic modeling of drug release from the matrix tablets were studied. Drug release profiles of formulated matrix tablets were compared to an existing (innovator) brand of metformin sustained-release tablet on the market using the similarity and difference factors, respectively. The extracted pectin had percentage yields ranging from 6 to 20% w/w with swelling indexes and water-holding capacities between 300–500% and 9-10 mL/ g, respectively, and pH within 6.20–6.90. All the formulated batches passed the drug content test (90–105%) and produced the optimal release of metformin (>80%) after 24 hours. Different batches of formulated tablets exhibited different mechanisms of drug release with batches F1, F2, F5, and F6 being similar (f 2 values being >50 and f 1 values <15) to the innovator brand. Pectin from the 6 different genotypes of okra studied has the potential for use as drug release modifiers in pharmaceutical manufacturing of control release matrix tablets and production of more affordable medicines....
A high-strength galactomannan (GA)-based hydrogel with thermal response and pH response is introduced in this paper. GA, N-isopropylacrylamide (NIPAM), N-[3-dimethylamino)propyl] methylacrylamide (DMAPMA), and montmorillonite were used to form hydrogels through a simple mixed static system. Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the structure and properties of the hydrogels. The compressive strength of the the hydrogel increased from 23.9 to 105.61 kPa with the increase of GA dosage from 0 to 1.5 wt%. When the NIPAM content in the monomer increased from 75% to 95%, the lower critical solution temperature (LCST) of the hydrogel changed from 36.5 to 45.8 ◦C. When the monomer content was higher than 10wt%, the swelling kinetics of the sample changed from the second-order equation to the first-order equation. With the increase of the proportion of NIPAM monomer, the release rate of bovine serum album in the early stage was faster, and the cumulative release rate was close to 100%.The release rate of bovine serum albumin at 37 ◦C was higher than that at 25 ◦C. The release rate of the hydrogel containing bovine serum albumin was the fastest under the condition of pH 7.4, followed by those at pH 6.6 and pH 5.0. The results showed that this thermal-responsive hydrogel has potential applications as a drug carrier for colon delivery....
Loading....